

Physics-informed inferences of galaxy clustering

Eleni Tsaprazi, Stockholm University, September 2023

A brief chronology of the Universe

While structure formation has been understood on large scales, further work on small ones is required...

Galaxies trace the large-scale structure

overdensity potential well

Galaxies trace the large-scale structure up to a bias

Baryonic processes depend on halo properties

Galaxy observations allow us to map the large-scale structure

Tidal shear lead to intrinsic alignments

Traditional estimation through 2-point statistics

 $\xi(r) = \langle \delta(\mathbf{r_1}) \delta(\mathbf{r_2}) \rangle$

probability above uniform

Averages compress information, we need to go beyond

We're reaching a limit observationally

What is there beyond 2-point statistics?

1 Roman 2 Slipher

3 CfA

4 CfA2 5 AGES 6 DESI 7 SDSS

8 MGC 9 LCRS

10 Humason

16 Euclid spectroscopic

21 Shapley-Ames Catalog

24 Shane-Wirtanen Counts

23 Las Campanas Redshift Survey

22 Euclid photometric

11 ACES 12 DEEP2 13 CN0C2 14 DEVILS 15 GAMA

17 DEIMOS 18 SPHERE-X

19 BOSS 20 6dFGS

25 SPHEREX

26 APM

27 DES

28 LSST 29 WISE

Information beyond 2-point statistics

Extracting full-field statistics with BORG

primordial density

gravity model

- 3D structure formation history: ensemble of Markov Chain Monte Carlo realizations
- Beyond 2- and N- point statistics

present-day density

galaxy survey

BORG has been successfully applied to real data

dark matter density

We can start asking questions with the prospect of using next-generation data

radial peculiar velocity

Can we use supernovae as complementary probes of the dark matter density? Paper I

Supernovae occur mostly in young galaxies

SNIa

- binary systems
- intense star-formation

NASA/CXC/M.Weiss

CCSN

- short-lived massive stars
- very intense star-formation

Exoplanet Exploration - NASA

MPA

Cross-correlate observed SN locations with the large-scale structure

The observations

- 1.200 SNIa & CCSN out to z = 0.036
- 60.000 spectroscopic galaxies

Systematic uncertainties in the SN observations:

- Kaiser effect
- Fingers-of-God
- Redshift uncertainty

3D dark matter density constrained by BORG with spectroscopic data, 2.7 Mpc/h

$$\mu_n = z_n + \frac{\mathbf{v}_{\mathbf{h},n}\hat{\mathbf{n}}}{c}$$
$$\sigma_n^2 = \sigma_{v,n}^2 + \sigma_{z,n}^2$$

Cross-correlate observed SN locations with the large-scale structure

The large-scale structure

 $ilde{T}_{ab}(\mathbf{k}) \propto rac{k_a k_b}{|\mathbf{k}|^2} \ ilde{\delta}(\mathbf{k})$

Web structure

voids sheets filaments knots

Eigenvalues

$$\lambda_1, \lambda_2, \lambda_3 < 0$$

 $\lambda_1, \lambda_2 < 0, \lambda_3 > 0$
 $\lambda_1 < 0, \lambda_2, \lambda_3 > 0$
 $\lambda_1, \lambda_2, \lambda_3 > 0$

Supernovae cluster like typical galaxies

Shot noise dominates, need more supernovae

The SIBELIUS simulation

BORG initial conditions

- Generate SN simulation informed by galaxy clustering

90.000 simulated galaxies and their properties (stellar mass, star-formation history)

Supernova production within a galaxy

$$R_{\mathrm{IA}}(t_0) = \int_{t_0}^{t_f} \Psi(t_0 - \tau) \Phi_{\mathrm{IA}}(\tau) d\tau$$

$$R_{\rm CC}(t_0) = \Psi(t_0) k_{\rm CC}$$

Tsaprazi+23 in prep.

Supernova simulation as a physics laboratory

Indications that supernovae cluster less than typical galaxies

- Cosmic web
- Study systematic effects
- Simulate more tracers

Constraining galaxy intrinsic alignment with the full large-scale structure Paper II

Galaxy intrinsic alignment A systematic effect and a probe of galaxy formation and cosmology

- Galaxy formation and evolution
- Systematic effect for weak lensing
- 2-point statistics

The tidal shear is non-Gaussian on small scales

- 70.000 elliptical galaxy shapes from SDSS
- 3D tidal shear constrained by BORG with spectroscopic data, 15.6 Mpc/h

$$e_{1}^{\mathrm{I}} \pm \iota e_{2}^{\mathrm{I}} = -\frac{C}{4\pi G} T_{\pm}$$

$$e_{a}^{\mathrm{obs}} = e_{a}^{\mathrm{I}} + \epsilon_{a}^{\mathrm{msm}} + \epsilon_{a}^{\mathrm{WL}} + \epsilon_{a}^{\mathrm{rnd}}$$

$$\mathcal{P}\left(e|C, T_{s}, \sigma^{2}\right) = \prod_{g=1}^{2N_{g}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(e_{g} - CT_{g,s})^{2}}{2\sigma^{2}}\right]$$

Alignment amplitude as a function of scale 4σ detection of intrinsic alignment at 20 Mpc/h

Alignment amplitude as a function of luminosity

Luminous galaxies tend to align more strongly because they live in more massive halos

Alignment amplitude as a function of color Redder galaxies would align more strongly due to morphology

Alignment amplitude as a function of redshift

- 4σ detection of intrinsic alignment constant with luminosity, color and redshift
- 2pt: 9σ at 6 Mpc/h, smaller scales higher redshifts: need photometry

vith luminosity, color and redshift or redshifts: need photometry

consistent

with

previous

studies

Joint inference of the large-scale structure from photometric galaxy clustering

Paper III

Photometric surveys reach fainter and more distant galaxies

- Photometric surveys provide uncertain redshift measurements
- Dark matter density provides information on most likely galaxy locations

Joint sampling of galaxy redshifts and density

• Self-consistent propagation of photometric uncertainties to large-scale structure inferences

Tests on self-consistent mock data

- 2e7 photometric and 1% spectroscopic redshifts
- Linear galaxy bias, resolution 13 Mpc

• Worst-case redshift uncertainties for upcoming surveys (300 Mpc)

Constrained dark matter density and peculiar velocity

Tsaprazi+23

Before and after galaxy positions

radial distortion mitigation - filamentary structure - similarity to ground truth

Cross-correlation from 28% to 86%

Improvement comes from 1% spectroscopic redshifts

- Need to advance this study to smaller scales / more strongly biased samples
- Photometric-redshift-only inference

Summary

- Structure formation is nonlinear on the most informative scales
- Existing 2-point estimators miss information
- Need to probe all high-order statistics of the large-scale structure

Summary

- Structure formation is nonlinear on the most informative scales
- Existing 2-point estimators miss information
- Need to probe all high-order statistics of the large-scale structure

- Supernovae in the large-scale structure
- Galaxy intrinsic alignment
- Photometric galaxy clustering

Outlook

- We're reaching the limit of observable galaxies
- Focus on
 - fully exploiting information in the data
 - self-consistently propagating uncertainties
 - demonstrating the power of high-order statistics on small scales